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Summary 

The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall 
estimates using data collected by the TRMM satellite. These estimates cover a 
substantial fraction of the earth’s surface. The physical validation of TRMM 
estimates involves corroborating the accuracy of spaceborne estimates of areal 
rainfall by inferring errors and biases from ground-based rain estimates. The 
TRMM error budget consists of two major sources of error: retrieval and sampling. 
Sampling errors are intrinsic to the process of estimating monthly rainfall and occur 
because the satellite extrapolates monthly rainfall from a small subset of 
measurements collected only during satellite overpasses. Retrieval errors, on the 
other hand, are related to the process of collecting measurements while the satellite 
is overhead. One of the big challenges confronting the TRMM validation effort is 
how to best estimate these two main components of the TRMM error budget, which 
are not easily decoupled. 

This four-year study computed bulk sampling and retrieval errors for the 
TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a 
tecanique that sub-samples gauge data at TRMM overpass times. Gridded monthly 
rain estimates are then computed from the monthly bulk statistics of the collected 
samples, providing a sensor-dependent gauge rain estimate that is assumed to 
include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates 
are then used in conjunction with the monthly satellite and gauge (without sub- 
sampling) estimates to decouple retrieval and sampling errors. The computed mean 
sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good 
agreement with theoretical predictions. The PR year-to-year retrieval biases 
exceeded corresponding TMI biases, but it was found that these differences were 
partially due to negative TMI biases during cold months and positive TMI biases 
during warm months. 
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ABSTRACT 

This paper reports on the results of a regional validation study of monthly rainfall 

products generated from sensor measurements aboard the Tropical Rainfall Measuring 

Mission (TRMM) satellite. The study analyzed four-years of rainfall estimates (1998-2oO1) 

produced from data collected by the TRMM microwave imager (TMI) and the precipitation 

radar (PR), and compared them with corresponding rain estimates computed from 66 rain 

gauges in the Oklahoma Mesonet. The rain estimates from all sensors were gridded at 1" x 

1" and 2" x 5". The aim of this study was to estimate an annual error budget for the TMI 

and PR using a methodology designed to decouple retrieval and sampling error. 

The methodology of the study sub-sampled the gauge data at satellite overpass times, 

and estimated monthly rainfall amounts using a simple method of bulk statistical 

integration. This approach yielded two distinct rain parameters: 1) Go-integration at all times 

during observation period (5-minute accumulations) and 2) Gs-bulk statistical integration 

(sub-sampled during overpasses). These two gauge-inferred rain parameters provided 

enough information to determine the sampling and retrieval errors for the satellite. 

The sampling errors computed for the TMI and PR using this methodology were 

closely correlated, with overall sampling biases of 5.9% and 7.7%, respectively. The overall 

retrieval biases were about 10% for the TMI and 29% for the PR. Since retrieval errors were 

computed in bulk, some of this difference was attributed to an offsetting seasonal bias 

observed in the TMI estimates, which was negative during the winter months and positive 

during the summer months. 
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1. Introduction 

Precipitation plays a fundamental role in the global water cycle and in forcing the large- 

scale dynamics of the general circulation of the atmosphere. Satellite observing platforms 

seem to offer the best possibility for accurately estimating the mean climatological 

distribution and variability of global precipitation. In addition to having a larger sampling 

domain, satellites have a distinct advantage over ground sensors in that they can gather data 

over oceanic and mountainous regions, where in-situ measurements of rainfall are extremely 

sparse or altogether non-existent. However, space-borne sensors collect rain information 

remotely and then estimate rain intensity at the earth's surface indirectly from radiance 

measurements obtained aloft. As satellite remote-sensing technology continues to improve, a 

greater emphasis is being placed on the quantitative accuracy of satellite retrievals of rainfall 

as inferred from regional validation data sets obtained from ground based sensors. 

The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 

1997, as a joint scientific initiative between the National Aeronautics and Space 

Administration (NASA) and the National Space Development Agency (NASDA) of Japan. 

TRMM collects information used to study the distribution and transport of latent heat in the 

tropical and sub-tropical atmosphere. One of the major goals of TRMM is to produce 

quantitatively accurate mean monthly rain estimates from a space-borne instrument platform 

with errors not exceeding 10-15% of the true rainfall (Simpson et al. 1988). 

The TRMM satellite carries several remote sensors that collect rainfall information 

between 40" N to 40" S. The aim of this study is to validate rainfall estimates from the 13.8 

GHz precipitation radar (PR), and the 9-channel TRMM microwave imager (TMI). The 

TMI collects passive radiance information at 10.7, 19.4,21.3,37.0 and 85.5 GHz (see 

Kummerow 1998). All TMI frequency channels are horizontally and vertically polarized, 

except for the 21.3 GHz channel which is only vertically polarized. Each sensor collects 

instantaneous areal observations during satellite overpasses, with local satellite revisit times 
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varying between once and twice daily depending on the latitude. Rainfall estimates for each 

sensor are subsequently determined from the bulk statistics associated with the collection of 

a month of discrete instantaneous observations. 

An important part of the TRMM ground validation strategy uses independently derived 

estimates from ground-based sensors to estimate the uncertainties and biases in the satellite 

estimates of surface rainfall. Wilheit (1988) describes the TRMM error budget as 

consisting of three types of errors: retrieval, sampling and random errors. Random errors 

are associated with random instrument noise, such as statistical effects of thermal emission. 

Wilheit points out that these errors do not generally average to zero, but that any residual 

random error will be considerably smaller than the other two error terms and so can be 

effectively absorbed into the retrieval component of the error budget (see Wilheit 1988 for 

more details). Physical validation of TRMM rain estimates, therefore, reduces to an analysis 

of the retrieval and sampling errors. 

Retrieval errors are caused by calibration and algorithm errors, causing the rain estimate 

to be systematically biased. Calibration errors are linked with real time measurements by the 

sensor hardware, whereas aIgorithm errors occur in the post real-time processing of sensor 

measurements and depend on the physics of the algorithmic model. Retrieval errors can be 

corrected by determining the magnitude and sign of the bias. This information can also lead 

to improvements in the algorithm physics (Chang and Liu 1999). 

Sampling errors are the other major contributor to the TRMM error budget. TRMM 

estimates of the mean monthly rainfall for any given area in the sampling domain are 

determined based on the discrete rain statistics collected during a month of overpasses. 

Sampling errors are due to non-continuous sampling and occur because the discrete set of 

satellite observations for a given region are not statistically representative of the long periods 

between subsequent satellite overpasses (lastinglo- 12 hours). Temporal sampling errors are 

intrinsic to the measurement process, since they depend on the fixed orbital characteristics 

of the satellite. Several researchers prior to the launch of TRMM rigorously studied the 
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effects of discrete sampling. Most of these studies considered simulated TRMM orbits and 

statistically modeled the rain fields to be consistent with the Global Atmospheric Research 

Project (GARP) Atlantic Tropical Experiment (GATE). Studies by Laughlin (1981), Bell 

(1987), McConnell and North (1987), Shin and North (1988), North and Nakamoto (1989), 

and Bell et al. (1990) all concluded that sampling errors should average between 8- 12% per 

month. 

This paper presents a comprehensive four-year validation study (1998-2001) of TRMM 

monthly rain estimates produced from the TMI and PR data. The general aim of this study 

was to estimate the annual error budget for TMI and PR rain estimates over a 2" x 5" region 

in Oklahonia, using a network of 66 rain gauges from the Oklahoma mesonet. An important 

part of this study involved the development of a validation strategy designed to estimate the 

individual contributions of retrieval and sampling errors to the TRMM error budget. The 

methodology of this study sub-sampled the gauge data at satellite overpass times and 

produced a secondary sensor-dependent gauge estimate of rainfall based on the month-to- 

month bulk rain rate statistics. This secondary gauge estimate, which was assumed to 

contain a TRMM equivalent sampling error, provided an empirical parameter that effectively 

decoupled the total error into sampling and retrieval components. 

Section 2 of this paper provides descriptions of the data sets used in the analysis. 

Section 3 develops the formalism used for the error model. Section 4 describes the 

procedure for sub-sampling and further uses regressions to illustrate the effects of sub- 

sampling. Results and analysis are presented in sections 5 and 6, and in section 7 the 

systematic effects of TRMM sampling at high latitudes near the satellite turning point are 

discussed. 

2. Data products 

a. Satellite Products 

TRMM satellite rainfall products are processed by the TRMM Science and Data 

Information System (TSDIS) and released to the general public through the Goddard Earth 
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Sciences (GES) Distributed Active Archive Center (DAAC). Table 1 summarizes the 

TRMM rain products used in this study, which were processed using TRMM version 5 rain 

algorithms. The reference numbers assigned to these different product levels correspond to 

the different stages of the processing. Detailed descriptions of TRMM products and the 

algorithms used to process the data can be found at the TRMM Project web site: 

http://trmm.gsfc.nasa.gov/data-dir/ProductS tatus.html 

The strategy used to grid the data is illustrated in Figure 1. Using Level 3 products, 

monthly rainfall estimates were first obtained for the ten 1" x 1" boxes shown in the figure. 

The 2" x 5" region shown in Fig. 1 covers an area from 34" to 36" N and 100" to 95" W. 

The longitude boundaries shown in the figure are defined by the east west boundaries of 

Oklahoma, not including the Panhandle, whereas the latitude boundaries span the lower two 

thirds of the state. The upper third of the state had to be excluded from the study because 

the PR swath did not collect data above 36". 

Special Geo-Regional Gridded Level 2 products (RG2A12 and RG2B3 1) provided 

gridded instantaneous orbital track data at a resolution of 0.5" for the TMI and 0.1" for the 

PR. The orbital track information was used to match the gauge time series with TRMM 

overpasses. It should be noted that the RG2B3 1 instantaneous rain rates are produced with 

the combined 2B3 1 algorithm. These estimates corresponded to the orbital track of the PR. 

Standard Level 2 products (2A12 and 2A25) were also used to compile rain rate statistics 

for the TMI and PR at the characteristic resolution of each sensor. 

b. Rain gauge data products 

The Oklahoma Mesonet is operated and maintained by the Oklahoma Climate Survey 

(OCS). The Mesonet consists of 118 automated weather stations that measure 10 

meteorological variables, including precipitation. Each station reports by radio to a base 

receiving station every 15 minutes. The tipping bucket gauges in the network accumulate 

rain in increments of 0.01" and produce a rain record every 5 minutes, even when no rain is 

measured (Brock, et al. 1995). The mesonet gauges are carefully calibrated in the lab 
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according to different rain rates, so that data collected in the field can be calibration adjusted. 

Brock et al. used fairly rigorous criteria in the selection of sites in order to minimize 

systematic errors caused by wind, obstructions and topography. As noted earlier, the 

partitioning of gauges into grid boxes was done in accordance with Fig. 1 and Table 2. 

One-minute gauge rain rates were computed with a cubic spline algorithm. The 

interpolation was done at this temporal scale so that the gauge time stamp could be matched 

with the TRMM overpases. Interpolated rain rates were automatically bias-adjusted for each 

observed rain event. An independent event was defined as a contiguous time series of tips, 

where consecutive tips in the time series were separated by less than thirty minutes. Bias 

adjustments were generally between one and five percent, which ensured that over and 

under-estimates of rain were not introduced through the interpolating algorithm. The 

interpolation of rain rates from a discrete time series of tips represents one potential source 

of error, but this error was significantly reduced by averaging rain rates within a time 

window. The gridding procedure will be discussed in more detail in the section 4. 

3. Error Model 

This section provides a description of the error model used in this study. The error 

corresponding to a given monthly areal rain estimate 

deviation from the true mean areal rainfall RT: 

is defined as the magnitude of its 

E = & - & .  (1) 

In estimating the total error associated with a large number of such estimates, it is more 

practical to define the error in terms of a statistical variance. In the error model described by 

Wilheit (1988), the total error is related to two primary sources of variance, retrieval ( o : ~ , ~ )  

and sampling (o,',,), as: 

( (R0-RJ)="'  en.R +02 err,S . 

In (2)  it is assumed that otrr,R and otrrS are uncorrelated and that RT is obtained from a 

perfect rain sensor that incurs no error itself. The first assumption is justified because 
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retrieval errors are incurred in conjunction with satellite overpasses, whereas sampling errors 

are incurred when the satellite is not overhead. 

In most practical situations, RT is replaced by an independent estimate of surface 

rainfall, derived from measurements obtained from surface instruments. In this study, a 

gridded network of rain gauges were used to physically validate satellite rain estimates. 

Treating RT as an observed quantity rather than an ideal quantity contributes an additional 

error variance in (2) related to the validation sensor (Bell and Kundu, in press), 

where Go corresponds to gridded gauge estimates of mean rainfall, representing the same 

areal region and temporal period as b. Go is assumed to incurr an error designated as 

2 oerr,G, which is uncorrelated with the other two error terms in (3). The motivation for the 

above equation is developed in a recent paper by Bell and Kundu (in press). 

Part of the validity in using Go as an estimate of RT is based on the sometimes implicit 

assumption that gauge errors associated with estimating the mean areal rainfall are at least 

one of order of magnitude smaller than the satellite errors shown in (3). Three different 

sources of error contribute to the variance 0 2 ~  G, which can be represented by 

(4) 
2 -  2 2 

Oerr,G - orad  + O S S  ’ ofyst 

2 where or&, oiS and O,,,correspond to random instrument error, spatial sampling error and 

systematic gauge error, respectively. Random instrument errors associated with tipping 

bucket measurements vary with rain rate, but are typically only about M.5% per 0.01”. 

Spatial sampling errors are incurred when point gauge estimates are used to estimate areal 

rainfall. Gauge sampling errors will be qualitatively addressed later in this section. 

Systematic gauge errors due to wind, topography, obstructions such as trees and buildings, 

and mechanical and maintenance-related issues can be significant in some cases and so 

generally cannot be entirely ignored (Habib et al. 2001). Although it is hard to quantify 
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systematic errors, greater qualitative precision can be gained by understanding whether rain 

estimates are positively or negatively affected by their influence. 

The aim of this study is to determine o:~~,, and o:,.~ for the TMI and PR rain 

estimates. The Mesonet gauges used in this study are sampling continuously and record 

rainfall at a high temporal resolution. Hence, the gauges are assumed to contain no temporal 

sampling errors due to discrete sampling. The rainfall estimate of an individual gauge gi can 

then be expressed in terms of the integral 

where rG(t) represents the complete recorded time series of rainfall for the gauge and T 

represents the duration of the validation period. The mean areal rainfall defined as Go in (3) 

is obtained by first summing over the index i for all gauges located within a gridded area 

and then dividing by the number of gauges in the grid 

Even though the individual gauges gi are assumed to contain negligible temporal sampling 

error, Go contains spatial sampling errors associated with using a gridded ensemble of point 

rain estimates to represent the mean rainfall over a large area. 

The rain estimate Go does not provide enough information to decouple the sampling and 

retrieval errors associated with &. The decoupling of these two error terms is accomplished 

by first sub-sampling the gauge data during overpass times and then using a simple method 

of bulk statistical integration to obtain a sensor dependent gauge-inferred estimate of 

rainfall, Gs. This methodology introduces a TRMM equivalent sampling error into the 

gauge-inferred estimate of rainfall. A satellite sampling error variance can now be defined 

by considering the relative statistical differences between the monthly estimates of Gs and 

Go defined as 
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0 2  err.S =((G,-GJ). (7) 

The error variance in (7) is used to approximate the TRMM sampling error, since the main 

differences between G, and Go are due to the discrete sampling of Go during satellite 

overpasses. 

Assuming that Gs and contain equivalent temporal sampling errors, any remaining 

variance is attributed to the retrieval error of the satellite sensor. A satellite retrieval error 

variance can be then obtained in a similar manner using Gs and &,: 

d err,R = ((Ro - Gs)l). 

In (7) and (8), Gs provides a rain parameter that effectively decouples the retrieval and 

sampling error components of the TRMM error budget (Bell et al. 2000). 

The error model described in this section assumes that the gauge and satellite spatio- 

temporal references are statistically equivalent. However, since individual rain gauges only 

represent point measurements, a spatial sampling error is incurred when a point estimate is 

taken to represent the mean of a larger area (Rodriquez-Iturbe and Mejia 1974b; Bamston 

1991; Hulme and New 1997). Spatial sampling errors with respect to the gauge estimates 

are analogous to the temporal sampling errors with respect to the satellite estimates. In the 

case of TRMM, temporal sampling errors occur because no rain information exists in the 

long time interval between contiguous observations. Similarly in the case of gauges, spatial 

sampling errors occur because no rain information exists in the large amount of space 

between the gauges used to compute Go. 

Prior studies have shown that spatial sampling errors can be significantly reduced by 

carefully planning the relative distribution and density of gauges in the network. By 

optimizing these two network parameters, the error associated with estimating the mean 

rainfall over a test area can be effectively minimized (Rodriquez-Iturbe and Mejia 1974a; 

North and Nakamoto 1989; Morrissey et al. 1995). There are other studies that make 

specific recommendations about the number of gauges needed to adequately sample a given 
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area. Xie and Arkin (1995) recommend using a minimum of at least 5 gauges for sampling 

a 2.5" x 2.5" area; Krajewski et al. (2000), however, suggests an even more stringent 

requirement of about 25 gauges for the same area. 

The Oklahoma Mesonet gauge network configuration approximates a quasi- 

homogeneous distribution and so it satisfies the first minimum error condition. Table 2 

shows that there were 66 gauges distributed across a 2" x 5" area. This distribution easily 

satisfied the Krajewski et al. criteria. Therefore, in this study, spatial sampling errors 

associated with Go and Gs are assumed to be minimized and at least one order of magnitude 

less than the TRMM sampling error. It should be pointed out that collecting more satellite 

observations, would also in principle reduce temporal sampling error, but since the orbital 

parameters of TRMM are fixed, the temporal sampling error cannot be further minimized 

through the simple collection of more data. 

4. Gauge data: methodology and analysis 

a. Formal procedure for estimating Gs for the TMI and PR. 

This validation strategy takes advantage of the high temporal sampling resolution of the 

gauges by sub-sampling the gauge time series during coincident satellite overpasses using 

orbital track information obtained fiom the gridded Level 2 products described in Table 2 

(RG2A12 & RG2B31). The TRMM satellite collects about 80 observations per month for 

each sensor over the study area in Oklahoma. Each observation, however, only results in 

partial coverage of the region shown in Fig. 1, thus in an average month, the full region is 

sampled about 30 times. In this study, coverage was determined at the 1" x 1" scale. If any 

part of the grid box was sampled by the satellite, then all the gauges in the box were 

included in the estimation of the mean rainfall for that box. 

A time-averaged rain rate is computed for each gauge by centering a constant time 

window Atw on a given overpass time tk 
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where subscripts i, j, k, and m correspond to the i* gauge, located in the f h  cell, at the k* 

overpass and in the m" month, respectively. Using (9), an estimate of the mean monthly 

rainfall for the i" gauge is then computed as 

where NO is the number of overpasses in the m* month, for a gauge located in the jth cell 

cell. Note that in general, No is not a futed quantity and can vary for different months and 

different cells. The mean gauge monthly rainfall for the f h  cell and the m" month can then 

be expressed as 

where N, is number of gauges in the grid cell, j. 

The satellite-coincident sub-sampled mean annual rainfall for the 2" x 5" cell is obtained 

from (1 1) by summing over all ten 1" x 1" cells for the whole year as 

10 12 

G, = 7,y,bj,,, . 

Differences in the swath geometry of the Th4I and PR require that the sub-sampling 

procedure described above be performed independently for each sensor, which makes Gs a 

sensor dependent rain parameter (e.g., G,TMI and G,PR). In general, G,TMI and 

G,PR are not equal, but should be highly correlated. 

b. Sensitivity of Gs to changes in At, and empirical formulas for estimating biases. 

Time averaging the gauge data about the overpass time takes advantage of the coupling 

between the time and space autocorrelation (Laughlin 1981; Bell 1990) by extending the 

effective representativeness of each point estimate to a larger areal domain. Zawadzki (1975) 

used this technique to match the gauge time domain with the radar areal domain, and 

Doneaud et al. (1984) used the technique in their formal development of the area-time 

11 



integral approach. The optimal time averaging scale defined earlier as Atw, depends on 

sensor resolution, orbital characteristics and storm properties. Although the sensor 

resolution and orbital characteristics are fixed, storm parameters such as rain type, cloud 

coverage and environmental wind speed can change from one event to the next, and are 

affected by climatological factors such as time of day, season, and synoptic and planetary 

scale climate anomalies such as El Niiio-La Niiia, droughts and monsoons . 
In this study, Gs was treated as a statistical variable that depended on the averaging time 

interval Atw computed at 2-minute intervals over a dynamic range between 3 and 61 

minutes. Figures 2a and 2b show the results for both G s M  and GsPR and illustrate the 

sensitivity of Gs to changes in Atw. From the figures it can be seen that Gs values for both 

sensors were fairly insensitive to the window size for the range of intervals selected. The 

difference between the minimum and maximum values of Gs in Fig. 2 was less then 4% for 

both sensors during 1998,1999 and 2001, but was about 8.5% for the TMI and about 6% 

for the PR in year 2000. 

In all subsequent estimates of the sampling and retrieval errors, Gs was represented by 

the mean of the data displayed in Fig. 2. Table 3 provides estimates of c a n d  

(i.e., ~ ~ ( z ~ )  = G,) for each year of the study. This method of determining Gs allows the 

effective time window to adjust in response to climate variability from year to year. 

A sampling bias can now be computed as the relative difference between Go and G as 
S 

G - G o  b, = 
Go 

The sign of bs is especially important because it indicates whether the rainfall is being 

statistically over-sampled or under-sampled. For example, a negative sampling bias indicates 

that the satellite is undersampling the actual rainfall; a positive total bias in this case will 

subsequently lead to a retrieval bias that exceeds the total relative bias. 

A retrieval bias can be similarly computed as the difference between Ro and G as, 
S 
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Whereas (13) only involves two rain parameters, the calculation of the retrieval bias in (14) 

involves Go, Gs and b, with the bias in both cases expressed as a fraction of Go. The 

results of these equations will be presented in section 6.  

C. Go VS. Gs 

The variance due to the discrete temporal sampling of the gauge data was apparent in the 

regressions of Go and Gs.The six panels in Figure 3 show a regression analysis of Go 

versus Gs-TMI and GLPR, using all four years of gauge data (1998-2001) at resolutions 

of 1" x 1" and 2" x 5". At the 2" x 5" spatial resolution, scattergrams are shown at two 

different temporal resolutions: 1) monthly and 2) 4-year monthly averaged. The 

corresponding correlation coefficients for each case are shown in Table 4. Note that Table 4 

also includes regressions comparing corresponding satellite and gauge data, which 

regressions will be discussed in Section 5a. 

As observed in Fig. 3, sub-sampling the gauge data at overpass times produced a sharp 

decorrelation at the 1" x 1" scale. Since no other data manipulations were performed, the 

large amount of variance suggested by the scatter at the 1" x 1" scale could only be 

attributed to the discrete sub-sampling of the gauge data. When the precipitation was 

averaged over the whole 2" x 5" grid space, the correlation coefficients significantly 

improved. It is interesting to note that the additional temporal averaging did not lead to any 

large improvement in the correlation coefficients computed at 2" x 5". In both cases at the 

2" x 5" scde, the Go and Gs data points showed high correlations. Based on this result, it is 

not expected that extending the study area to a more standard size of 5" x 5" will produce 

much additional improvement in these correlations. 

Figure 4 shows the distributions of gauge-inferred sampling errors for the TMI and PR, 

computed relative to the monthly differences between Gs and Go over four study years at a 
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resolution of 1" x 1". If the process of sampling were purely random, the distribution of 

errors should be quasi-normal about zero. The two distributions shown in Fig. 4 are 

approximately normal. The median, mean and standard deviation values were -0.29,O. 13 

and 2.3 for the TMI, and -0.29,0.27 and 2.7 for the PRY respectively. The negative median 

was due to a higher frequency of negative G, - Go differences, whereas the mean was 

positively skewed due to the presence of some large positive G, - Go differences. Gs 

estimates in some cases far exceeded the natural upper bound of Go, which was about 8 

&day. High Gs estimates were presumably due to statistical oversampling of rainy 

periods. 

5. Validation of level 3 satellite products with Go and G,. 

a. Monthly regression analysis: TMI and PR vs. Go and, Gs 

Figures 5a and 5b show the four-year time series of mean monthly rain estimates at 2" x 

5" resolution for: 1) Go, GLTMI and TMI, and 2) Go, GsPR and PR, respectively. Figures 

6 and 7 show scattergrams of the TMI and PR satellite rain estimates matched against 

corresponding Go and Gs gauge rain estimates at the following spatio-temporal resolutions: 

1) 1" x 1" using monthly estimates (i.e., 480 points), 2) 2" x 5" using monthly estimates 

(i.e., 48 points), and 3) climatological monthly estimates (Le., 4-year monthly averages or 12 

points). Table 4 presents a summary of the computed correlation coefficients resulting 

from this analysis. 

The correlation between gauge and satellite rain estimates improved markedly as the 

spatial and temporal averaging scale was increased. As shown in Figures 6a-b and 7a-b, low 

correlation coefficients were observed at the 1" x 1 " scale between the satellite estimates and 

both gauge estimates Go and Gs. Random errors were an important reason for the low 

correlations at the higher spatial resolution. At 1" x 1" scale, satellite random errors were 

distributed between adjacent grid boxes, whereas gauge random errors were related to using 

a smaller number of gauges to estimate the mean rainfall for each grid box. The Gs 
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correlations with respect to the TMI and PR improved significantly as the averaging area 

was expanded to the 2" x 5" scale that included all 66 gauges. Although Table 4 results 

suggest that Go was more highly correlated with the satellite estimates, the observed 

improvements in going from the 1" x 1" to the 2" x 5" resolution seem to indicate that Gs 

and GO correlations were converging, and additional convergence might have been realized 

if the averaging area could have been expanded to the more standard size of 5" x 5". 

Laughlin (1981) and Bell (1987) showed that the auto-correlation time at the 1" x 1" scale is 

only about 3.5 hours, significantly less than the satellite revisit time, which is about 10.5 

hours at the satellite's turning point. At the 2" x 5" scale, the auto-correlation time is about 8 

hours, which is a time more consistent with the mean revisit time of the satellite, resulting in 

the higher gauge-satellite correlations observed in Fig. 6c-f and 7c-f. 

b. Probability Density Functions (PDF) for TMI, PR, 3B42, Gs and Go. 

The effects of discrete sampling were further investigated by examining the probability 

density functions (PDF) compiled from four years (1998-2OO1) of monthly rain events at 

the 1" x 1" scale. Figure 8a displays PDFs for the TMI, Gs and Go, and similarly, Fig. 8b 

displays the PDFs for the PR with Gs and Go. At this spatial scale, each PDF consisted of 

480 points (10 cells x 12 months x 4 years), which were then binned at 0.5 mm intervals, 

expressed in units of &day. 

Note that each of the three panels shown in Fig. 8 consists of two plots, a main plot 

and an inner plot. The inner plot is associated with high monthly accumulations of low 

probability. It extends the dynamic range of the distribution shown in the main plot and 

adjusts the vertical axis so as to ampllfy the fine structure in the tail. The main outer plot 

covers a range from 0 and 10 &day, which spans the full dynamic range of Go. The inner 

plot extends this range from 10 and 25 d d a y .  Although the points in the outer tail of the 

distribution only represent a small percentage of the cumulative probability, they play an 

important role in determining the mean of each distribution. The high frequency of low rain 
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rates (bins near zero) is balanced against high rain rates that have a very low frequency of 

occurrence. 

In Fig. 8a and 8b, the PDFs constructed from the TMI, PR and Gs reveal a similar 

structure, showing a maximum probability in the zero rain bin (i.e., 0 to 0.5 &day), 

followed by an exponential decay. The effects of discrete temporal sampling can be clearly 

observed by comparing TMI, PR and Gs with Go near extremes of each spectrum. GO 

showed a relatively low probability of observing trace monthly rainfall (-8%), with zero 

probability of observing gridded monthly rain totals that exceeded 8 &day. Gs, on the 

other hand, closely matched the PR spectrum in the first bin (-26%) and had an exponential 

tail that extended well beyond the observed threshold for Go (as shown in the inner plot) 

The PDF for the TMI revealed a similar exponential distribution, but displayed a higher 

frequency of monthly estimates in the first bin (-3 l%), suggesting that the TMI had a 

greater likelihood of observing trace amounts of monthly rainfall than either the PR or Gs. 

This feature was presumably due to the lMI not observing weaker rain systems with ice 

particle sizes and concentrations below detectable levels (Le., small ice-scattering cross 

section). 

Since the data used to construct the PDF for Gs was computed from the data extracted 

directly from Go, it was assumed that the statistical differences in the PDF spectrums of Go 

and G, were due to the effects of discrete temporal sampling. Since the autocorrelation time 

at 1" x 1" scale was about 3.5 hours, the structural characteristics of the PDFs for Gs, TMI 

and PR could also be related to statistical effects of undersampling at this spatial scale. For 

example, Fig. 8c compares the PDF of Go with the 3B42 rain product. The 3B42 is a 

special level 3 TRMM product that provides daily rainfall estimates by adjusting the Global 

Precipitation Index (GPI) to the TRMM combined rain product (2B3 1) during coincident 

TRMM overpasses (Adler at al. 1994). The 3B42 uses eight GOES IR observations per 

day separated by 3-hour intervals to compute daily rainfall amounts, which results in a time 

separation between subsequent observations that is more compatible with the autocorrelation 
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time at the 1" x 1" scale. As a result, the PDF of 3B42 shown in Fig. 8c appears structurally 

similar to Go and so does not show pronounced effects of discrete sampling as do the PDFs 

of TMI, PR and Gs. 

6. Results 

a. TMI and PR error statistics: annual means, standard errors and biases 

Table 5 presents a summary of the four-year mean annual rain rates (p) together with 

the sampling and retrieval standard errors (oen s, 

averaging scheme described at the beginning of section 5a: 1) monthly 1" x 1" resolution, 2) 

monthly 2" x 5" resolution, and 3) climatological monthly 2 x 5 resolution. The standard 

errors shown in Table 5 were computed for the TMI and PR using (7) and (8). The higher 

standard errors observed at 1" x 1" scale were consistent with the low correlations observed 

at this scale in section 5a, relating to a fundamental mismatch between the size of the grid 

box, the autocorrelation time and the satellite revisit time. Note that in going from 1" x 1" to 

2" x 5" scale, the means remained constant while the errors were significantly reduced, due 

to the reduction of random errors between 1" x 1" grid boxes. 

using the same spatio-temporal 

Satellite sampling and retrieval biases for the TMI and PR were computed using (13) 

and (14). Figures 9a and 9b show plots of the sampling and retrieval biases, respectively, for 

each year of the study. During 1998 and 1999, the sampling biases were negative for both 

sensors, but switched to positive values during 2000 and 2001. The highest sampling biases 

observed for the TMI were -20% in 2000 and 2001, whereas for the PR a sampling bias of 

-30% was observed in 2000. The sampling biases for the other years of the study fell 

within the nominal range of 8-12% predicted by prior theoretical simulations (Laughlin 

1981, McConnell and North; 1987, Shin and North 1988; North and Nakamoto 1989; and 

Bell et al. 1990). As expected, overall, the PR sampling biases were larger than the TMI 

sampling biases because the PR's swath covered only one-third the area of the TMI swath. 

Interestingly, in1998 and 2001, the PR actually revealed slightly smaller sampling biases 
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than the TMI, however, these differences were extremely marginal and non-significant. The 

sense of the bias (Le., positive or negative) was the same for both sensors. 

The retrieval biases shown in Fig. 9b illustrated a different trend from the sampling 

biases shown in Fig. 9a. Whereas the sampling errors for the TMI and PR appeared to be 

closely correlated, the retrieval errors revealed more disparity between the two sensors. 

Retrieval biases for the TMI were slightly negative in 2000 and 2001, with a maximum bias 

of about 4 0 %  observed in 1999. The PR retrieval biases, on the other hand, remained 

positive and were greater than 10% for all four years. The PR retrieval bias also reached a 

maximum of about 40% in 1999. 

b. Instantaneous rain rate profiles: TMI, PR and Go. 

Monthly rainfall accumulations are statistically coupled to rain retrievals obtained during 

instantaneous satellite overpasses. Figure 10 shows lognormal rain rate distributions for the 

TMI, PR and Go, with rain rates presented in units of dBR. The gauge rain rates were 

compiled from all available data between 1998 and 2001 to approximate a climatological 

distribution. The anomalous spikes observed in the central part of the gauge distribution 

shown in Fig. 10 were introduced by the cubic spline transformation used to generate a 

continuum of rain rates from a discrete time series of tips. The satellite profiles were 

produced from 56 rain cases over Oklahoma, selected to be nominally representative of the 

overall rain rate climatology for the region. Standard Level 2 products were used (2A12 and 

2A25) to pick a diverse grouping of rain cases from all four seasons that covered all four 

years of the study. 

As shown in Fig. 10, the TMI rain rate profile was structurally discrete and did not 

exceed a threshold of 50 mmhr (-17 BR). This result can be explained by examing the 

way TMI estimates surface rainfall over land. The TMI algorithm estimates surface rainfall 

by matching brightness temperature depressions from all available TMI channels to a 

database of brightness temperature-rain rate profiles generated by the Goddard Cumulous 

Ensemble Model (Tao and Simpson, 1993; Kummerow et al. 2001). Data collected over 
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land is processed using only the brightness temperature information in the 85 GHz channel. 

Information retrieved by the other TMI channels are not used because of difficulties in 

resolving the rain signal from the highly variable emissions coming from the land surface 

beneath the cloud column (Spencer et al.1989, Ferraro and Marks 1995, Conner and Petty 

1998). In the current version 5 TMI "land" algorithm, 85 GHz brightness temperatures are 

matched against a database of only 28 modeled cases. As a result, the TMI land rain rate 

profile in Fig. 10 appears discrete. These quantized effects are not observed in the TMI 

oceanic rain rate profiles. It should be noted that the number of land cases in the database 

will be expanded in the version 6 algorithm. This algorithm improvement will distribute the 

rain profile across a greater number of bins. With only the 85 GHz channel, the Th4I land 

algorithm infers rain rate-brightness temperature relations based on the assumed correlation 

between processes of ice scattering and surface precipitation. The physical connection 

between these two cloud processes is fairly well established in the literature (Spencer et 

al.1989, Ferraro and Marks 1995, Conner and Petty 1998), but these same studies also 

suggest that the connection is physically indirect and highly non-linear. 

In contrast with the TMI, the PR distribution showed structural continuity and revealed a 

larger dynamic range of observations, extending beyond 100 mm/hr (20 dBR). The 

distribution of PR rain intensities was found to be structurally more similar to the 

climatological gauge distribution. Although the PR distribution of instantaneous rain rates 

appeared to be more physically realistic, the "MI interestingly showed lower retrieval biases 

when the instantaneous rain rates were used to estimate rainfall over longer integration 

periods (e.g., one month). As shown in section 6a, bulk PR retrieval biases were 

consistently positive, suggesting that retrieval errors were being incurred at the 

instantaneous scale. 

PR rain estimates are affected by three potential sources of retrieval error (Iguchi 2000): 

1) attenuation correction 2) non-homogenous beam-filling of the PR footprint, (i.e., 

presence of reflectivity gradients) and 3) stratiform-convective classification. The PR 
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transmits a beam at 13.8 GHz, which is strongly attenuated by precipitation. The return 

power is first subjected to an attenuation correction that results in the calculation of an 

effective reflectivity factor. In heavy rain cases, this correction can change the estimated rain 

rate by a factor of 10 or more (Iguchi, et al. 2000, Meneghini et al., 2000). After correcting 

for attenuation, further corrections account for non-uniform beam filling associated with 

reflectivity gradients, for as Iguchi points out, the attenuation correction is made under the 

assumption that the rain is homogenously distributed. Each rainy pixel must then be 

matched to an assumed drop-size distribution using a dual Z-R stratiform-convective 

classification scheme. 

Based on the analysis of PR instantaneous observations it was suspected that part of the 

PR (positive) retrieval bias could be due to excessive rainfall in the extreme tail of the PR 

distribution. Though difficult to observe in Fig. 10, it was found that the PR estimated more 

rain in the far ranges of the distribution. Further examination of convective cells in the 56 

selected rain cases revealed the existence of correlated clusters of rain rates exceeding 200 

mrn/hr. These cases were typical of the rain regimes observed during the late spring and 

summer months, These particular cases not only required a large attenuation correction, but 

these cases also displayed strong reflectivity gradients. The Z-R relation itself has no 

fundamental limiting constraints and will generate arbitrarily high rain rates for a 

corresponding high Z value. Beam smearing may also be important in the spreading of 

higher reflectivity values into adjacent bins (Iguchi et al. 2000). High rain rate cases 

corresponding to individual overpasses have an especially large statistical impact on bulk 

monthly rain estimates, since the determination of a mean unconditional monthly rain rate 

depends on a relatively small number of observations. 

c. Seasonal and diurnal rainfall climatology 

Seasonal and diurnal variations over land at higher latitudes can affect the error 

statistics. In particular, it is important to understand how such variations affect retrievals and 

whether the TRMh4 rain algorithms are biased by cyclical climatological variability. This 
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part of the study investigated the secondary effects of Oklahoma's seasonal and diurnal 

cycles on the TRMM sampling and retrievals. Figure 1 la displays a plot showing a 

normalized monthly climatology for Oklahoma constructed from the four years of gauge 

data used in the study. Figures 1 l b  and 1 IC show four-year mean monthly sampling , 

retrieval and total biases as a fraction of Go computed at 2" x 5" for the TMI and PR using 

(13) and (14). The total bias is simply the sum of those two equations. 

As shown in Fig. 1 l b  and 1 IC, the monthly sampling and retrieval biases were about the 

same order of magnitude, with the retrieval biases showing an overall larger range of 

variability. Monthly sampling biases were both positive and negative, but revealed a positive 

tendency in the case of both sensors. Large positive retrieval biases of over one hundred 

percent were observed for both the TMI and the PR during the summer months of July and 

August. Fig. 1 l a  indicates that July and August are relatively dry compared with other 

months. Large statistical deviations were therefore further amplified because these 

deviations are considered relative to G,. It is also suspected that these retrieval biases are 

associated with the way the retrieval algorithms handle observations from deep convective 

systems, commonly observed in the Midwestern Plains during the summer. The PR 

algorithm must apply a complicated two-way mixed phase attenuation correction, while the 

TMI, algorithm must infer rain rates based on the scattering signature from the 85 GHz 

channel. 

The TMI displayed a systematic reversal in the sign of its retrieval bias during the winter 

and summer months. The retrieval bias was negative during the winter months and positve 

during the summer months, suggesting a fundamental connection between the algorithm 

physics and the seasonal changes in the distribution of ice above the freezing level (e.g., 

size, shape and number density). The negative winter retrieval bias of the TMI may partly 

explain the difference in the overall annual retrieval bias observed between the two sensors. 

In the case of the TMI, the negative seasonal winter bias partly canceled the positive summer 

bias leading to a lower annual retrieval bias. The PR, on the other hand, shows a generally 
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positive monthly retrieval bias for all observed months. The large negative June PR retrieval 

bias upon further investigation was related to a large negative anomaly in 2001 (-87%). 

Figure 12 shows the normalized diurnal profiles for the gauges and the TMI, plotting 

the hourly rain accumulations relative to the total diurnal rainfall. Hourly rainfall totals for 

the "MI were computed from the gridded Level 2 products. As seen in Fig. 12, the TMI 

shows a warm bias in the afternoon (12 noon to 6 pm CST), relative to the gauges. The 

timing of this feature suggests a direct correlation with the development of afternoon 

convection, associated with the production of large ice particles. Mohr et al. (1996) 

classified mesoscale convective systems (MCS) over land and ocean using the TMI 85 GHz 

channel, and showed the existence of strong correlations between the TMI hourly rain 

accumulations and the late afternoon development of MCS over land as indicated by the 85 

GHz scattering signature. This result suggests that the TMI algorithm is overestimating the 

late afternoon component of the diurnal rain budget, resulting in an observed bias relative to 

the gauges diurnal profile. 

7. Discussion of systematic effects of discrete sampling at high latitudes on TRMM 

rain estimates. 

Prior investigations of the TRMM sampling error were mostly focused on the effects of 

sampling over the equatorial oceans, where the actual satellite revisit times are nearly equally 

spaced in time from one orbit to the next (Laughlin 1981; McConnel and North 1987; Shin 

and North 1988). Nonetheless, Bell et al. (1990) showed that TRMM sampling statistics 

varied substantially between the equator and the satellite's turning point at -35" N. Bell et 

al. used simulations of the TRMM orbit to compare two sampling errors using two test 500 

x 500 km2 grid boxes at latitudes: 1) 5" and 2) at 25" N. In their study, it was demonstrated 

that satellite overpasses close to the equator were nearly equally spaced in time, but at high 

latitudes, the time interval between overpasses systematically fluctuated between very short 

and very long periods. Although there were a greater number of observations at higher 
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latitudes, these observations were not all statistically independent when considering the 

revisit times in correspondence with the autocorrelation time. 

The TRMM satellite orbits precesses through the diurnal cycle with a period of about 

46 days at an inclination angle of 35". Oklahoma is situated at the satellite turning point 

where the satellite switches between ascending and descending orbits. It is uncertain how 

much the sampling error at high latitudes is affected by systematic factors. An examination 

of the orbital characteristics for Oklahoma revealed that the time separation between 

contiguous overpasses subdivided into two repetitive modes: 1) Atl=21.6 hours and 2) 

At2= 1.6 hours. When averaged together over the 4-year study period, these two modes 

produce a mean revisit time of 10.5 hours. These results are consistent with Bell (1990). 

Although the mean revisit time determines the number of overpasses, the variation between 

actual revisit times suggests that this variability will systematically increase the sampling 

error variance. 

The ratio of the revisit time to the autocorrelation time provides an approximate criterion 

for evaluating statistical independence (i.e., Ath& 1). For the 2" x 5" area shown in Fig. 1, 

the autocorrelation time of about 8 hours. Comparing this autocorrelation time with the 

satellite revisit times over Oklahoma suggests that TRMM sensors are routinely either 

under-sampling or over-sampling the region. For example, for Atl=21.6, there is little 

question whether contiguous observations are independent; however, there is nearly a factor 

of 2 difference between At1 and E.  Laughlin (1981) clearly showed that the sampling error 

rapidly increased when the sampling interval exceeded 12 hours. In going from 12 to 24 

hours, Laughlin showed that sampling errors increased by about a factor of 2. Salby and 

Callaghan (1997) in another study, probed the effects of satellite under-sampling of the 

diurnal cycle and found that even in the case of precessing satellites like TRMM, an 

empirical determination of the mean diurnal cycle was still biased because the observations 

collected were too far about in time. The opposite situation occurs in the case of the second 

mode with Atl=l.6. In this case, the revisit time is less than the 'autocorrelation time by a 
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factor of 6.5. In this scenario, contiguous observations are no longer independent in any 

statistical sense, indicating that the region is being over-sampled. Over-sampling, just like 

under-sampling, can skew the rainfall statistics, either positively or negatively. More 

rigorous study will be needed to determine the net effect of sampling near the satellite point 

where contiguous observations are routinely being either under-sampled or over-sampled. 

In better understanding the sampling error component of the error budget at high latitudes, it 

is also important to probe the statistical properties of rainfall in association with the 

structure and life cycles of the rain fields over land, for the orbital characteristics of TRMM 

are closely coupled with the natural variability of rain. 

8. Conclusions 

This paper tested a validation strategy designed to estimate sampling and retrieval errors 

associated with TRMM rain estimates. Four years (1998-2001) of gauge and satellite 

monthly rain estimates were analyzed in this study. An error model was proposed that 

estimated bulk sampling and retrieval errors by sub-sampling the validation data set only at 

TRMM overpass times. The method was then applied to gauge estimates that provided good 

quasi-homogeneous coverage for a 2" x 5" gridded region of Oklahoma near the turning 

point of the TRMM satellite. 

The results of this study were reasonably consistent with prior theoretical simulations of 

the TRMM sampling error. Averaged over all four years, the PR had a sampling bias of 

about 7.7% versus a sampling bias of about 5.9% for the TMI. These percentages differed 

by a factor of 1.3, as expected based on the swath differences between the two sensors. The 

overall TMI retrieval bias of approximately 10% was shown to be considerably lower than 

the 29% overall retrieval bias for the PR. Meaningful insights were gained into the nature of 

these differences through further data analysis of retrievals using TRMh4 Level 2 and Level 

3 rain products. 

An examination of instantaneous rain rate profiles compiled for the TMI and the PR 

revealed a better statistical match between the PR and the gauges, both in the shape and 
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dynamic range of the distributions. The TMI distribution, on the other hand, was 

structurally discrete due to inherent physical limitations in the TMI algorithm, particularly 

with regards to the database matching over land. However, PR retrieval errors computed 

over longer integration times generally exceeded those calculated for the TMI. This analysis 

of instantaneous rain rates suggested that the PR maybe overestimating rain rates for the 

cores of convective systems over land. The TMI retrievals, on the other hand, appeared to be 

affected by the seasonal cycle. The mean monthly retrieval biases for the TMI changed sign 

during winter and summer, with negative winter biases partially canceling positive summer 

biases when the integration was performed over an annual time scale. In the case of the PR, 

the sign of the retrieval bias remained consistently positive, which contributed to the PR 

retrieval biases (without accounting for sampling biases) exceeding the TMI retrieval biases 

in all four years of the study. Further examination of the diurnal effects on the TMI as 

compared against a gauge-inferred climatology suggested the presence of a strong warm 

bias in the late afternoon.. 

Based on the results of this study, to apply the presented methodology to other regions, 

the following conditions and constraints are recommended: 

Gauge data should be obtained from a quasi-homogenous network of rain gauges 

covering a large area of at least 2" x 5" in size (ideally 5" x 5" in size); 

0 Gauge density should be sufficiently high to minimize the gauge spatial sampling 

error variance, (Krajewski et al. criterion); 

Gauges should sample rainfall at a high temporal resolution so that time stamps can 

be optimally matched with instantaneous TRMM overpasses; 

Satellite error statistics should be evaluated over a temporal period T that is much 

greater than the TRMM granule (e.g., in this study, D1-month). 

0 

The first two conditions attempt to minimize the gauge spatial sampling error. The third 

condition applies a logistical requirement that ensures that gauge-inferred rain rates can be 

matched in time with satellite overpasses. Many gauges do not meet this requirement 
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because they record rain amounts over larger time intervals (i.e., hourly, daily, etc.). The last 

condition is a statistical requirement that requires the sample sizes for both satellite and 

gauge rain estimates be large enough to compute representative bulk statistics. 

Satellite and ground based estimates of rainfall are both important in improving the 

accuracy of global precipitation estimates. Ground estimates are not only valuable for 

validating satellite estimates, but also can be used to minimize errors in global estimates 

through modern techniques of data assimilation. The Global Precipitation Mission (GPM), 

a follow-up mission to TRMM, is already in the planning stages. With more attention 

focused on global rain estimation and latent heating budgets, it is important that ground and 

spaceborne measurements be collected in a manner that best achieves this important 

scientific goal. Additional large-scale gauge telemetry networks like the Oklahoma Mesonet 

are needed to provide more accurate gauge estimates of rainfall that can be used to minimize 

errors in spaceborne estimates of rainfall. This scientific objective requires good 

coordination and careful planning among scientists, government agencies such as NASA 

and N O M ,  and other countries. 
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Figure Captions 

FIG. 1. A schematic of Oklahoma showing the geographical partitioning of the 2" x 5" grid 

space into 1" x 1" cells. Cell numbers correspond to numbering in Table 1. 

FIG. 2. Distribution of the sub-sampled rain parameter G, for a) TMI and b) PR as a 

function of the time window, At,. 

FIG. 3. Regressions of Go versus G, monthly rain estimates for a) TMI and b) PR at 1" x 

1" resolution using monthly estimates (480 points); c) TMI and d) PR a 2" x 5" resolution 

using monthly estimates (48 points); and e) TMI and f) PR at 2" x 5" resolution using 

climatological 4-year monthly estimates (12 points). 

FIG. 4. Distribution of sampling errors for the TMI (solid) and PR (dashed) for all four 

study years (1998-2001) computed at a resolution of 1" x 1" (480 data points). 

FIG. 5. Four-year time series (1998-2001) of monthly rainfall estimates for a) Go, 

Gs-TMI and TMI and b) Go, Gs- PR and PR. 

FIG. 6. Regressions of monthly rain estimates for TMI vs. Go and G, at different 

spatiotemporal resolutions: a) Go and b) G,-TMI at 1" x 1" resolution using monthly 

estimates (480 points); and c) Go and d) G,-TMI at 2" x 5" resolution using monthly 

estimates (48 points); and e) Go, and f) G,-TMI at 2" x 5" resolution 4-year monthly 

means (12 points). 

FIG. 7. Regressions of monthly rain estimates for PR vs. Go and G, at different 

spatiotemporal resolutions: a) Go and b) G,-PR at 1" x 1" resolution using monthly 
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estimates (480 points); and c) Go and d) G,-PR at 2" x 5" resolution using monthly 

estimates (48 points); and e) Go, and f ,  G,PR at 2" x 5" resolution 4-year monthly means 

(12 points). 

FIG. 8. Monthly probability density functions computed at 1" x 1" resolution for a) TMI, 

G, and Go; b) PR, G, and Go and c) 3B42 (AGPI) and G,. The dynamic range on the outer 

plot extends to 10 d d a y .  The inner plot adjusts the scaling on the ordinate axis and 

extends the range from 10 to 25 &day. The inner plot displays the fine structure in the 

tail of each distribution. 

FIG. 9. TMI and PR a) sampling biases and b) retrieval biases plotted for each year of the 

study. 

FIG 10. Rain rate distributions for the TMI, PR and Oklahoma Mesonet gauges. TMI and 

PR profiles were constructed from 56 rain cases. Gauge profde was compiled from all data 

available over four study years (1998-2001). 

FIG. 11 a) Bar plot of normalized monthly accumulations for the Oklahoma Mesonet rain 

gauges averaged over all four study years, with each month representing the fractional 

contribution to the total annual rainfall; 4-year monthly sampling, retrieval and total biases 

for b) TMI and c) PR computed at 2" x 5". 

FIG. 12. Normalized rainfall accumulations for the TMI and Oklahoma Mesonet gauges. 

Each hour represents the fractional contribution to the total diurnal rainfall. 



TABLE 1. TRMM satellite products 
TRMM Sensor Data Data Description* 
Product Resolution 
2A12 TMI -6.9 km Instantaneous surface rain rates 

(85 GHZ) 
2 M 5  PR -4 km Instantaneous surface rain rates 

RG2A12 TMI 0.5" Instantaneous orbital track info, 
gridded instantaneous rain rates 

RG2B31 Combined 0.1" Instantaneous orbital track info 

3 M 5  PR 0.5" Gridded monthly rain 

3B3 1 TMI 1" Gridded monthly rain 

3B42 Geo-IR 1" Gridded monthly rain 

information 

information 

information 
* only describes file information used in this study. 

TABLE 2. Number of gauges per 1" x 1" cell 

CellNo. No. 
Gauges 

1 5 
2 6 
3 8 
4 9 
5 7 
6 5 
7 6 
8 7 
9 5 
10 8 

TABLE 3. d t , >  and corresponding estimate of for TMI and PR 

I TMI PR 1 
Year cG,> d t >  <G,> 4 t >  
1998 261.0 29 268.4 29 

1999 298.9 29 297.6 37 
2000 373.4 31 401.6 31 
2001 330.9 43 313.6 43 
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TABLE 4. Correlation coefficients for TMI, PR and G, at grid resolutions 
of 1" x 1" and 2" x 5". 

I 1" x 1" 2" x 5" 2" x 5" 
(all months) (all months) (4-yr monthly avg.) 

Sensor G, G, G, G, G, G, 

Gs-TMI 0.65 1 .o 0.83 1 .o 0.84 1 .o 
G,-PR 0.63 1 .o 0.84 1 .o 0.90 1 .o 

TMI 0.44 0.26 0.55 0.53 0.73 0.7 1 
PR 0.46 0.25 0.65 0.54 0.85 0.76 

Table 5.4-vear annual means and standard errors (sampling and retrieval) for the TMI and - -  
PR. Mean knual rainfall also shown for G,. 

I 1" x 1" 2" x 5" 2" x 5" 
(all months ) (all months) (4-yr monthly avg.) 

Sensor p 0 m . S  Oerr,R 0err.S O e , R  CL %IS % T , R  

(&day) (&day) ( d d a y )  (&day) ( d d a y )  ( d d a y )  (&day) (&day) (&day) 
TMI 2.9 2.3 1 3.93 2.9 1.31 2.37 2.5 0.59 1.05 
PR 3.4 2.7 1 4.62 3.4 1.42 2.42 2.8 0.90 0.99 
G, 2.5 2.3 1.9 
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FIG. 1. A schematic of Oklahoma showing the geographical partitioning of the 2" x 

5" grid space into 1" x 1" cells. Cell numbers correspond to numbering in Table 1. 
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FIG. 2. Distribution of the sub-sampled rain parameter GS for a) TMI and b) 

PR as a function of the time window, Atw. 
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FIG. 3. Regressions of Go versus GS monthly rain estimates for a) TMI and b) 

PR at 1" x 1" resolution using monthly estimates (480 points); c) TMI and d) 

PR a 2" x 5" resolution using monthly estimates (48 points); and e) TMI and f) 

PR at 2" x 5" resolution using climatological 4-year monthly estimates (12 

points).. 36 
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FIG. 4. Distribution of sampling errors for the TMI (solid) 

and PR (dashed) for all four study years (1998-2001) com- 

puted at a resolution of 1" x 1" (480 data points). 

- 
Jun Dec Jun Dec Jun Dec Jun Dec 

FIG. 5. Four-year time series (1998-2001) of monthly rainfall for a) 

GO, Gs-TMI and TMI and b) Go, Gs-PR and PR. 
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GO and b) GS-TMI at 1" x 1" resolution using monthly estimates (480 points); and c) GO and d) GS-TMI at 2 

x 5" resolution using monthly estimates (48 points); and e) GO, and f) GS-TMI at 2" x 5" resolution 4-year 
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2" x 5" resolution using monthly estimates (48 points); and e) GO. and f) GS-PR at 2" x 5" resolution 4- 

year monthly means (12 points). 39 



0.35 

0.30 

0.25 

0.20 

0.15 

0.10 

0.050 

0.0 
0 1 2  3 4 5 6 7 8 9 10 

0.35 

0.30 

0.25 

0.20 

0.1 5 

0.1 0 

0.050 

0.0 

0.35 

0.30 

0.25 

0.20 

0.1 5 

0.10 

0.050 

0.0 

0 1 2  3 4 5 6 7 8 9 10 

0 1 2  3 4 5 6 7 8 9 10 

mdday 
FIG. 8. Monthly probability density functions computed at 1" x 1" resolution for a) TMI, GS and Go; 

b) PR, GS and Go and c) 3B42 (AGPI) and Go. The dynamic range on the outer plot extends to 10 

mm/day. The inner plot adjusts the scaling on the ordinate axis and extends the range from 10 to 25 

&day. The inner plot displays the fine structure in the tail of each distribution. 
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FIG. 9. TMI and PR a) sampling biases and b) retrieval biases plotted for each year of the study. 
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FIG 10. Rain rate distributions for the TMI, PR and Oklaho- 

ma Mesonet gauges. TMI and PR profiles were constructed 

from 56 rain cases. Gauge profile was compiled from all 

data available over four study years (1998-201). 

41 



4-Year Rainall Climatology (1998-2001) 
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FIG. 11 a) Bar plot of normalized monthly accumulations for the Oklahoma 

Mesonet rain gauges averaged over all four study years, with each month repre- 

senting the fractional contribution to the total annual rainfall; 4-year monthly sam- 

pling, retrieval and total biases forb) TMI and c) PR computed at 2" x 5". 
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FIG. 12. Normalized rainfall accumulations for the 

TMI and Oklahoma Mesonet gauges. Each hour 

represents the fractional contribution to the total 

diurnal rainfall. 
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